176. A Simple Relation between Molecular Polarisation in Solution and the Dielectric Constant of the Solvent.

By Raymond J. W. Le Fèvre.
The expression ${ }_{\mathrm{o}} P_{1} /{ }_{\mathrm{o}} P_{2}=K\left(\varepsilon_{2}+2\right) /\left(\varepsilon_{1}+2\right)$, in which ${ }_{\mathrm{o}} P_{1}$ and ${ }_{\mathrm{o}} P_{2}$ are the orientation polarisations of a solute molecule in two media of dielectric constants ε_{1} and ε_{2} respectively, appears to be valid over a wide range of ε values. Three groups of examples of its applicability are given in the following tables : (a) for pairs of solutions, (b) for solutions, and the corresponding solutes in the vapour states, and (c) for solutions, and the (liquid) solutes in bulk.
(a) Pairs of Solutions.-The solvents are indicated under S_{1} and S_{2}; except where otherwise stated by the authors to whom reference is made, ${ }_{0} P_{1}$ and ${ }_{0} P_{2}$ are in each case taken as the differences between the total polarisations extrapolated to infinite dilution and the molecular refractions for the Na_{D} line; T is the temperature at which both measurements were made; the appropriate references are listed on p. 775. The value of the constant K is seen to be about unity.

T.	S_{1}.	${ }_{\mathrm{o}} P_{1}$.	ϵ_{1}.	S_{2}.	${ }_{0} P_{2}$.	ϵ_{2}.	K.
Chlorobenzene.							
20°	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{2}$	50	$2 \cdot 28$	CCl_{4}	50	$2 \cdot 23$	1.01
	$\mathrm{CS}_{2}{ }^{2}$	$44 \cdot 5$	$2 \cdot 64$	$\mathrm{C}_{2} \mathrm{Cl}_{4}$	49	$2 \cdot 30$	0.98
	$\mathrm{CCl}_{4}{ }^{2}$	50	$2 \cdot 23$	$\mathrm{C}_{10} \mathrm{H}_{18}$	52	$2 \cdot 16$	0.98
	$\mathrm{C}_{10} \mathrm{H}_{18}{ }^{2}$	52	$2 \cdot 16$	cyclo- $\mathrm{C}_{6} \mathrm{H}^{1} \mathrm{H}_{12}$	53	$2 \cdot 02$	1.02
	cyclo - $\mathrm{C}_{6} \mathrm{H}_{12}{ }^{2}$	53	$2 \cdot 02$	$\mathrm{C}_{6} \mathrm{H}_{14}$	55	$1 \cdot 91$	0.99
18	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}^{3}$	55	$2 \cdot 347$	$\mathrm{C}_{6} \mathrm{H}_{6}$	$51 \cdot 5$	$2 \cdot 241$	1.09
25	Dioxan ${ }^{12}$	$50 \cdot 1$	$2 \cdot 306$	cyclo- $\mathrm{C}_{6} \mathrm{H}_{12}$	53	$2 \cdot 02$	1.01
o-Dichlorobenzene.							
20	$\mathrm{CS}_{2}{ }^{2}$	95	$2 \cdot 64$	$\mathrm{C}_{6} \mathrm{H}_{6}$	111.5	$2 \cdot 28$	0.92
	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{2}$	111.5	$2 \cdot 28$	$\mathrm{C}_{10} \mathrm{H}_{18}$	$106 \cdot 5$	$2 \cdot 16$	1.08
	$\mathrm{C}_{10} \mathrm{H}_{18}{ }^{2}$	106.5	$2 \cdot 16$	$n-\mathrm{C}_{6} \mathrm{H}_{14}$	111	$1 \cdot 91$	1.02
Acetone.							
20	$\mathrm{C}_{10} \mathrm{H}_{18}{ }^{2}$	158	$2 \cdot 16$	$n-\mathrm{C}_{6} \mathrm{H}_{14}$	169	$1 \cdot 91$	$0 \cdot 99$
	$\mathrm{C}_{6} \mathrm{C}_{6}{ }^{18}$	160	$2 \cdot 28$	CCl_{4}	176	$2 \cdot 23$	0.92
	$\mathrm{CS}_{2}{ }^{2}$	154	$2 \cdot 64$	$\mathrm{C}_{6} \mathrm{H}_{6}$	160	$2 \cdot 28$	1.04
$18 \cdot 5$	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH}_{2}{ }^{3}$	118.4	$7 \cdot 23$	CHCl_{3}	$149 \cdot 7$	$5 \cdot 04$	1.04
Benzophenone.							
20	$\mathrm{CS}_{2}{ }^{2}$	174	$2 \cdot 64$	$\mathrm{C}_{6} \mathrm{H}_{6}$	184	$2 \cdot 28$	1.03
	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{2}$	184	$2 \cdot 28$	CCl_{4}	186	$2 \cdot 23$	$1 \cdot 00$
	$\mathrm{CCl}_{4}{ }^{2}$	186	$2 \cdot 23$	$\mathrm{C}_{10} \mathrm{H}_{18}$	181	$2 \cdot 16$	$1 \cdot 04$
	$\mathrm{C}_{10} \mathrm{H}_{18}{ }^{2}$	181	$2 \cdot 16$	$n-\mathrm{C}_{6} \mathrm{H}_{14}$	185	1.91	$1 \cdot 04$

It is to be noted that the relation now proposed satisfactorily includes the data for the polar solvents, chloroform, aniline, and chlorobenzene; the rule previously given by Jenkins ${ }^{1}$ (viz., total polarisation $\propto 1$ /dielectric constant of solvent) fails in this respect, as is seen from the following data:

Total polarisation of nitrobenzene in various solvents at 25°.

S_{1}.	Total P_{1}.	ϵ_{1}.	S_{2}.	Total P_{2}.	ϵ_{2}.	$P_{1} \epsilon_{1} / P_{2} \epsilon_{2}$.
cyclo- $\mathrm{C}_{6} \mathrm{H}_{12}$	360	$2 \cdot 016$	$n-\mathrm{C}_{6} \mathrm{H}_{14}$	$372 \cdot 5$	1.887	$1 \cdot 03$
CCl_{4}	$353 \cdot 1$	$2 \cdot 228$	$\mathrm{C}_{10} \mathrm{H}_{18}$	352.9	$2 \cdot 162$	$1 \cdot 03$
CS_{2}	$310 \cdot 0$	$2 \cdot 633$	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{8}$	353.8	$2 \cdot 273$	$1 \cdot 01$
CHCl_{3}	$341 \cdot 2$	$4 \cdot 722$	CS_{2}	310	2.633	$1 \cdot 97$
"	,'	,,	$\mathrm{C}_{6} \mathrm{H}_{6}$	353.8	$2 \cdot 273$	$2 \cdot 00$
"	,"	,"	$n-\mathrm{C}_{6} \mathrm{H}_{14}$	$372 \cdot 5$	$1 \cdot 887$	$2 \cdot 29$

(b) Solutions, and Solutes as Vapours.-If ε_{2} is put $=1$, and ${ }_{o} P_{1}$ has the significance defined in section (a), then ${ }_{o} P_{1} / \mathrm{o} P_{2}$ gives the ratio between the orientation polarisations in the dissolved (infinitely dilute) and in the gaseous state; K in this case is higher than unity :

T.	S_{1}.	${ }_{\mathrm{o}} P_{1}$	$\epsilon_{1}{ }_{1}$	ne.	${ }_{\mathrm{o}} P_{2}$.	K.	T.	S_{1}.	${ }_{o} P_{1}$. Nitro	$\begin{gathered} \epsilon_{1} \\ \text { nzene. } \end{gathered}$	S_{2}.	${ }_{\mathrm{o}} P_{2}$.	K.
20°	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{2}$	50	$2 \cdot 28$	Vac. ${ }^{5}$	$58 \cdot 1$	$1 \cdot 23$	$18.5{ }^{\circ}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}^{1}$	$169 \cdot 6$	$5 \cdot 82$	Vac. ${ }^{4}$	$377 \cdot 3$	$1 \cdot 17$
n-Propyl chloride.							25	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{1}$	$321 \cdot 2$	$2 \cdot 273$,,	373	1.22
							25	$\mathrm{CHCl}_{3}{ }^{3}$	$208 \cdot 6$	$4 \cdot 724$,"	,,	1.25
	$n-\mathrm{C}_{6} \mathrm{H}_{14}{ }^{2}$	84	$1 \cdot 91$	Vac. ${ }^{7}$	$87 \cdot 8$	$1 \cdot 25$	Acetone.						
	$\mathrm{C}_{10} \mathrm{H}_{18}{ }^{2}$	82	$2 \cdot 16$,"	,"	$1 \cdot 29$							
	$\mathrm{CCl}_{4}{ }^{2}$	80	$2 \cdot 23$	"	"	1.28		$n-\mathrm{C}_{6} \mathrm{H}_{14}{ }^{2}$	169	$1 \cdot 91$	Vac. ${ }^{6}$	175	$1 \cdot 26$
	$\mathrm{C}_{6} \mathrm{H}_{6}{ }_{2}$	$77 \cdot 5$	$2 \cdot 28$,	,	$1 \cdot 26$		$\mathrm{C}_{10} \mathrm{H}_{18}{ }^{2}$	169	$2 \cdot 16$	',	"	$1 \cdot 34$
	$\mathrm{C}_{2} \mathrm{Cl}_{4}{ }^{2}$	77	$2 \cdot 30$	",	,"	$1 \cdot 26$		$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{2}$	160	$2 \cdot 28$,,	,	$1 \cdot 30$
	$\mathrm{CS}_{2}{ }^{2}$	68	$2 \cdot 64$,	"	$1 \cdot 20$		$\mathrm{CS}_{2}{ }^{6}$	154	$2 \cdot 64$,	,	$1 \cdot 36$

Müller's rule ${ }^{10}$ [that ${ }_{o} P_{\text {soln. }} /{ }_{o} P_{\text {gas }}=1-k(\varepsilon-1)^{2}$], when applied to the above data, is found to hold only for solvents of low dielectric constant (for which $k=0.075 \pm 0.005$); it breaks down for chloroform ($k=0.032$) and chlorobenzene ($k=0.035$).
(c) Solutions, and Solutes in Bulk.-For a given substance, the expression relates measurements made on dilute solutions with those on the undissolved material; thus a liquid in bulk can be regarded as a solution of itself in itself, i.e., in a solvent S_{1} of dielectric constant ε_{1}. For most of the cases worked out, K lies between 1 and 2 , an observation which suggests a simple method for the approximate determination of the dipole
moment of a liquid substance of known type: from the dielectric constant, density, molecular weight, and refractive index of the substance in bulk, the atomic plus orientation polarisation in, say, benzene can be calculated by the general equation as ${ }_{o} P_{1}\left(\varepsilon_{1}+2\right) /$ $4 \cdot 273 \mathrm{~K}$; then at $25^{\circ} \mu$ will equal $0 \cdot 22\left[{ }_{0} P_{1}\left(\varepsilon_{1}+2\right) / 4 \cdot 273 K\right]^{\frac{1}{2}}$ Debye units.

In the following table ${ }_{0} P_{1}$ is the difference between the value of $\left[\left(\varepsilon_{1}-1\right) /\left(\varepsilon_{1}+2\right)\right] M / d$, and the molecular refraction for sodium light; ${ }_{o} P_{2}$ has the meaning used in Section (a).

T.	S_{1}.	${ }_{0} P_{1}$.	ϵ_{1}.	S_{2}.	${ }_{0} P_{2}$.	ϵ_{2}.	K
20°	$\mathrm{Me} \cdot \mathrm{NO}_{2}{ }^{15}$	$37 \cdot 25$	$39 \cdot 4$	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{17}$	192.5	$2 \cdot 280$	$1 \cdot 85$
25	$\mathrm{Ph} \cdot \mathrm{NO}_{2}{ }^{8}$	62.27	$35 \cdot 22$	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{1}$	321.2	$2 \cdot 273$	$1 \cdot 69$
,,	-	,,	,,	$\mathrm{CCl}_{4}{ }^{1}$	$320 \cdot 5$	$2 \cdot 227$	171
,	,"	,',	,,	$\mathrm{CHCl}_{3}{ }^{1}$	208.6	$4 \cdot 724$	1.65
		${ }^{\prime \prime}$,	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}^{3}$	169.6	$5 \cdot 82$	1.74
25	$0-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me} \cdot \mathrm{NO}_{2}{ }^{\text {: }}$	$68 \cdot 7$	20.07	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{12}$	293	$2 \cdot 273$	1.54
20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}^{3}$	31.99	$5 \cdot 82$	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{2}$, 9	51•1	$2 \cdot 28$	$1 \cdot 14$
,,	,,	,'	,,	$\mathrm{CCl}_{4}{ }^{2}, 9$	$51 \cdot 1$	$2 \cdot 23$	$1 \cdot 16$
,"	,"	,"	,,	$\mathrm{CS}_{2}{ }^{2}, 9$	$45 \cdot 6$	$2 \cdot 64$	$1 \cdot 18$
,"	",	",	,"	$n-\mathrm{C}_{6} \mathrm{H}_{14}{ }^{2,9}$	$56 \cdot 1$	$1 \cdot 91$	$1 \cdot 14$
,"				$\mathrm{C}_{2} \mathrm{Cl}_{4}{ }^{2}{ }^{\text {, }}$	$49 \cdot 1$	$2 \cdot 30$	$1 \cdot 18$
"	$\mathrm{COCl}_{2}{ }^{13}$	$21 \cdot 34$	$4 \cdot 784$	$\mathrm{CCl}_{4}{ }^{14}$	$27 \cdot 4$	$2 \cdot 275$	$1 \cdot 23$
25	$\mathrm{COMe}_{2}{ }^{8}$	$48 \cdot 1$	$20 \cdot 87$	CCl_{4}	154	$2 \cdot 227$	$1 \cdot 69$
18	COPhMe ${ }^{15}$	$63 \cdot 1$	$18 \cdot 31$	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{3}$	187.5	$2 \cdot 241$	$1 \cdot 61$
25	$\mathrm{CHCl}_{3}{ }^{8}$	$24 \cdot 3$	$4 \cdot 80$	$\mathrm{C}_{6} \mathrm{H}_{6}$	26.5	$2 \cdot 273$	$1 \cdot 46$
				CCl_{4}	28.8	$2 \cdot 227$	$1 \cdot 36$
20	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CO}_{2} \mathrm{Me}^{11}$	43 '	6.'633	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{11}$	67.9	$2 \cdot 280$	$1 \cdot 28$
20	$\mathrm{MeCN}{ }^{15}$	$37 \cdot 16$	$36 \cdot 2$	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{16}$	251	$2 \cdot 280$	$1 \cdot 32$
25	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH}_{2}{ }^{19}$	$28 \cdot 81$	$6 \cdot 677$	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{11}$	$50 \cdot 8$	$2 \cdot 273$	$1 \cdot 15$
25	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NHMe}^{19}$	31.96	$5 \cdot 903$	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{12}$	57	$2 \cdot 273$	$1 \cdot 04$
25	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NMe}_{2}{ }^{19}$	$30 \cdot 24$	$4 \cdot 811$	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{12}$	53	$2 \cdot 273$	0.91
25	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}{ }^{19}$	$39 \cdot 39$	$12 \cdot 013$	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{18}$	$109 \cdot 4$	$2 \cdot 273$	$1 \cdot 18$
25	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}^{19}$	$42 \cdot 58$	8.704	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{18}$	99	$2 \cdot 273$	$1 \cdot 08$
25	$-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}^{19}$	$48 \cdot 2$	$10 \cdot 711$	$\mathrm{C}_{6} \mathrm{H}_{6}{ }^{18}$	$132 \cdot 2$	$2 \cdot 273$	$1 \cdot 08$

Certain liquids, e.g., water and alcohols, stand alone and yield constants which are considerably higher than the foregoing. Accurate dielectric-constant data are lacking, and we hope to make an experimental study of this group in the near future. The data for water and ethyl alcohol are given as examples :

25°	$\mathrm{H}_{2} \mathrm{O}^{8}$	13:59	$79 \cdot 45$	$\mathrm{C}_{6} \mathrm{H}_{6}$	$60 \cdot 2$	$2 \cdot 273$	$4 \cdot 30$
	,,	,'	,	Dioxan	$78 \cdot 2$	2:306	$3 \cdot 29$
					$75 \cdot 3$		$3 \cdot 41$
25	EtOH ${ }^{8}$	$40 \cdot 5$	$24 \cdot 69$	CCl_{4}	61	2.227	$4 \cdot 19$

Treatment in the same way of bulk-vapour state figures leads to similar results in the few cases where the available measurements permit a test to be made.

References used in the tables.

[^0]In the above tables ${ }_{o} P$ has been taken, in nearly every case, as the difference between the total polarisation and the molecular refraction for sodium light, i.e., with each example a different and probably inadequate allowance for the atomic polarisation contribution to the total polarisation has been made. The effects of an erroneously large orientation polarisation figure (increase of K, as, e.g., in instance of nitromethane) will obviously be most marked, for arithmetical reasons, with the greater dielectric constant values [i.e., Section (c)]. The indication, however, is that-applied to accurately corrected orientation polarisations-the constant is of the order unity.

The molecular polarisation ($={ }_{\mathrm{A}} P+{ }_{\mathrm{E}} P+{ }_{\mathrm{o}} P$) values shown by a substance in the liquid, dissolved, or gaseous state are now easily related. Recorded data show that a non-polar
solute (${ }_{\mathrm{o}} P=0$) has much the same molecular polarisation in all solvents: only polar solutes exhibit appreciable alterations. Therefore, since the distortion polarisation ($=$ atomic and electronic polarisations) of a substance is usually practically independent of its state of aggregation, these differences are wholly referable to the orientation polarisation factor, the variations of which it is now shown can, in turn, be simply associated with the dielectric constant of the medium in which the solute molecules are dispersed.

Form and Physical Meaning of the Relation.-With the rather limited range of experimental data at present available, it is not possible to decide whether some similar relation of the type ${ }_{o} P_{1} /{ }_{o} P_{2}-K\left(\varepsilon_{2}+n\right) /\left(\varepsilon_{1}+n\right)$ would not describe the facts better than the $\varepsilon+2$ expression used in this paper; e.g., if $n=3$, the first eight pairs of nitrobenzene solutions (p. 773) yield constants : $1.01,0.95,0.99,1.01,0.92,1.03,0.97$, and 0.98 respectively.

For the time being, however, the $n=2$ form is to be preferred, since it can be derived a priori from the not unreasonable assumption that the orientation polarisation of a solute molecule may, within limits, vary in some approximătely direct manner with the space between the solvent molecules; this quantity, in l c.c. of a medium of dielectric constant ε, should be $1-(\varepsilon-1) /(\varepsilon+2)=3 /(\varepsilon+2)$ c.c. (Clausius, " Mechanische Wärmetheorie," 2,94), so that, generally, ${ }_{0} P=3 k /(\varepsilon+2)$. Application to the case of a gas at low pressure shows, because $\varepsilon_{\text {vac. }}=1$, that the constant k is numerically the orientation polarisation in the vapour state. Clearly then, the ratio of the orientation polarisations developed by a given solute in two media of dielectric constants ε_{1} and ε_{2} is

$$
{ }_{\mathrm{o}} P_{1} / \mathrm{o} P_{2}=\frac{3 k_{1} /\left(\varepsilon_{1}+2\right)}{3 k_{2} /\left(\varepsilon_{2}+2\right)}=\frac{k_{1}}{k_{2}} \cdot \frac{\varepsilon_{2}+2}{\varepsilon_{1}+2}=K \frac{\varepsilon_{2}+2}{\varepsilon_{1}+2}
$$

in which K should be exactly unity.

Experimental.

The dielectric constants and densities at 25° of the following pure liquids have been measured by the resonance and pyknometric methods employed previously (this vol., p. 480), and the total polarisations computed according to the Clausius-Mosotti relation in the usual way; these results, less the appropriate molecular refractions for sodium light, are tabulated in Section (c) above under ε_{1} and ${ }_{0} P_{1}$.

Aniline.-Purified by redistillation, b. p. 182- 183°, and finally by freezing; $d_{4^{\circ} 5^{\circ}} 1.01742$, $\varepsilon_{25^{\circ}}$ 6.6773.

Methylaniline.-The commercial product was p-toluenesulphonated by the standard Schotten-Baumann process, and the derivative crystallised from dilute ethyl alcohol until of constant m. p.; hydrolysis, etc. (Ullmann, Annalen, 1903, 327, 110), afforded pure methylaniline, b. p. $193^{\circ} / 760 \mathrm{~mm}$., $,_{4{ }^{25}}{ }^{2 \circ^{\circ}} 0.98409, \varepsilon_{25^{\circ}} 5 \cdot 9032$.

Dimethylaniline.-A commercial " pure" specimen was redistilled, b. p. $193^{\circ} / 760 \mathrm{~mm}$., and twice frozen, m. p. 2-3 $3^{\circ}, d_{4^{\circ}}^{25^{\circ}} 0.95309, \varepsilon_{25^{\circ}} 4 \cdot 8114$.

Quinoline.-Purified by distillation, b. p. 236- $238^{\circ} / 761 \mathrm{~mm}$., over lime, followed by freezing in a calcium chloride-ice mixture, m. p. $-20^{\circ}, d_{4^{\circ}}^{25^{\circ}} 1 \cdot 08979, \varepsilon_{25^{\circ}} 8.7044$.
isoQuinoline.-Purified by redistillation, b. p. $240^{\circ} / 762 \mathrm{~mm}$., followed by freezing; m. p. $25^{\circ}, d_{4^{20}}^{25^{\circ}} 1.09897, \varepsilon_{25}{ }^{\circ} 10 \cdot 7108$.

Pyridine.-A commercial " pure" specimen, after standing for two days over sodium hydroxide, was distilled; b. p. $114-115^{\circ} / 758 \mathrm{~mm}$., $d_{4 \cdot}^{255^{\circ}} 0.97796, \varepsilon_{2} 5^{\circ} 12.0132$.

[^0]: 1 Jenkins, Nature, 1934, 133, 106. ${ }^{2}$ Müller, Physikal. Z., 1933, 34, 689. ${ }^{3}$ Hassel and Uhl, Z. physikal. Chem., 1930, B, 8, 187. ${ }^{4}$ Calc. from results of Sugden and Groves, J., 1934, 1091. ${ }^{5}$ Calc. from Smyth and McAlpine, J. Chem. Physics, 1935, 3, 55. ${ }^{6}$ Zahn, Physikal. Z., 1932, 33, 686. ${ }^{7}$ Sänger, ibid., 1931, 32, 20; Helv. Phys. Acta, 1930, 3, 161. ${ }^{8}$ Graffunder and Heymann, Z. Physik, 1931, ry2, 744. 9 Müller, Physikal. Z., 1932, 33, 731. ${ }^{10}$ Müller, Trans. Faraday Soc., 1934, 30, 729. ${ }^{11}$ Estermann, Z. physikal. Chem., 1928, B, 1, 134. ${ }^{12}$ Williams, Physikal. Z., 1931, 32, 27. ${ }^{13}$ Schlundt and German, J. Physical Chem., 1925, 29, 353. ${ }^{14}$ Le Fèvre, forthcoming paper. ${ }^{15}$ Walden, Z. physikal. Chem., 1910, 70, 569. ${ }^{16}$ Partington and Cowley, Nature, 1935, 135, 474. ${ }^{17}$ Partington and Hunter, J., 1933, 312. ${ }^{18}$ Le Fèvre and Smith, J., 1932, 2810. ${ }^{19}$ Present paper.

